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Abstract

In this work, we explore the possibility of the Hall effect and ambipolar diffusion as a mechanism for fast reconnection. The
reconnected flux of our resistive and resistive+Hall simulations replicates the GEM results. Furthermore, we investigate, for the first
time, the effect of ambipolar diffusion in the GEM. The reconnected flux of the resistive+ambipolar and resistive+Hall+ambipolar
simulations showed increases of up to 75% and 143%, respectively, compared to the resistive and resistive+Hall simulations,
showing that ambipolar diffusion contributes significantly to the reconnected flux. Our second scenario has a magnetic Harris
field without perturbations but with an out-of-plane component, known as a guide field. We found that the reconnection rate
increased faster with ambipolar diffusion, reaching values close to 0.1 for the resistive+Hall+ambipolar simulation followed by
the resistive+Hall. These two simulations achieved the highest kinetic energy, implying more efficient energy conversion during
reconnection.
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1. Introduction

Magnetic reconnection is a topological rearrangement of the
magnetic field that converts magnetic energy into plasma en-
ergy (Zweibel and Yamada, 2009). This process is usually de-
scribed in terms of a change in the connectivity of the field lines,
also known as the magnetic field topology, which allows the
release of magnetic energy stored in the system. The Ohmic
resistivity is responsible for this release, causing the plasma
frozen-in-flux condition to be violated in the diffusion zone,
where breaking and reconnection of magnetic field lines occur
(Priest and Forbes, 2000; Bittencourt, 2013). Magnetic recon-
nection takes place in different plasmas, spanning from labora-
tory to astrophysical environments, is responsible for the dif-
ferent mechanisms of particle acceleration, the main driver of
space weather (Priest and Forbes, 2000; Birn et al., 2012) and
astrophysical phenomena, such as geomagnetic storms. To un-
derstand the energy conversion associated with these phenom-
ena, it is essential to know the rate at which magnetic recon-
nection occurs (Comisso and Bhattacharjee, 2016). For ex-
ample, the amplitude of geomagnetic disturbances can be con-
trolled by the rate of magnetic reconnection (Nakamura et al.,
2018), which provides information about how fast the process
occurs, how much magnetic flux is reconnected, and how much
magnetic energy becomes kinetic energy that accelerates the
plasma (Hesse and Cassak, 2020). For these reasons, the mag-
netic reconnection rate has been studied observationally, ex-
perimentally, theoretically, and numerically. Nowadays, it is
known from numerical simulations and satellite observations
that the normalized reconnection rate is about 0.1 in many sys-
tems (Cassak et al., 2017; Hesse and Cassak, 2020), a much
larger value than that predicted by the classical model of Sweet

(Sweet, 1958b,a) and Parker (Parker, 1957, 1963). However,
despite years of effort and first-principles theories (Liu et al.,
2022; Goodbred and Liu, 2022), a complete theoretical un-
derstanding has not been achieved. The above suggests that
those classical models are insufficient to capture all the rele-
vant processes during reconnection, probably because the phys-
ical mechanisms for fast reconnection are challenging to study
through theoretical means (Malyshkin and Zweibel, 2011).

The key to explaining a value of 0.1 may lie in studying the
particle decoupling caused by the Hall effect, or in other phys-
ical phenomena beyond the single-fluid magnetohydrodynamic
(MHD) approximation, like ambipolar diffusion. The GEM re-
connection challenge (Birn et al., 2001) looked into that and
verified that all their models with the Hall effect had similar re-
connection rates, but later other simulations (Karimabadi et al.,
2004; Bessho and Bhattacharjee, 2005, 2007) showed that re-
connection also has a similar rate without this effect. How-
ever, most of these works are not concerned with partially ion-
ized plasmas. According to Malyshkin and Zweibel (2011), in
a weakly ionized plasma with significant interaction between
ions and neutrals, fast reconnection is triggered by the Hall ef-
fect at considerably lower Lundquist number values compared
to scenarios with fully ionized plasma. These conditions for fast
reconnection are satisfied in molecular clouds, where another
effect could play a key role: the ambipolar diffusion, which
is extremely important in astrophysics and contributes signifi-
cantly to events of interstellar medium heating (Falgarone et al.,
2015; Zweibel, 2015). So far, simulations have shown that am-
bipolar diffusion causes thinning of the current sheet, favour-
ing rapid reconnection rates (Ethan and Lazarian, 1999; Heitsch
and Zweibel, 2003; Ni et al., 2015). However, the direct effect
of ambipolar diffusion on the reconnection rate has yet to be
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well studied in the Earth’s magnetotail. While the literature on
the value 0.1 for partially ionized plasmas is limited, numeri-
cal kinetic simulations suggest that magnetic reconnection rates
can approach this value (Jara-Almonte et al., 2019). Although
research on magnetic reconnection in partially ionized plasmas
is less extensive, a multitude of astrophysical environments, in-
cluding the lower solar atmosphere, comet tails, protoplanetary
nebulae, and disks around young stellar objects, are filled with
partially ionized plasmas. This motivates further investigation
into the underlying mechanisms driving fast reconnection and
the conditions under which it can occur in these environments.

Even in the presence of neutrals, all plasma components can
be assumed to be strongly coupled by collisions, and the single
fluid remains adequate. In many cases, however, collisions be-
tween particles are not sufficient to fully couple all species in a
plasma. For example, in diffusion regions where magnetic re-
connection occurs, the single-fluid approximation is no longer
valid: ions are decoupled from the magnetic field and no longer
move with electrons. Similarly, there are regions where the neu-
tral gas in a plasma separates from the charged particles. This
gives rise to relative velocities that manifest themselves as non-
ideal processes, such as the Hall effect and ambipolar diffusion
(Khomenko and Collados, 2012). Fortunately, even when the
plasma is modelled as a single fluid, it is possible to adopt an
approach to deal with the effects produced by the interaction
between its species. This approach, instead of including more
fluids in the system, relies on the use of a generalized Ohm’s
law, whose additional terms contain the necessary information
to describe a plasma where the different species are not strongly
coupled.

With the above motivation, we address the problem of mag-
netic reconnection rate by performing a systematic comparison
of simulations. We take a single-fluid approach with terms as-
sociated with the Hall effect and ambipolar diffusion in the re-
sistive MHD equations. We do this to determine the effect of
both phenomena on the behaviour of magnetic reconnection, in
particular on the amount of reconnected flux and the reconnec-
tion rate. All numerical simulations are obtained by implement-
ing and modifying subroutines in the MAGNUS code (Navarro
et al., 2017). The paper is structured as follows. In section
2 we present the resistive MHD equations with the Hall effect
and ambipolar diffusion, which are included in the equations
through Ohm’s law. In section 3 we give a brief description of
MAGNUS and the inclusion of both effects in the code. Then,
in section 4 we perform the GEM benchmark test for the Hall
effect. To our knowledge, no one has used the GEM to study
the effect of ambipolar diffusion on the reconnected flux, so in
section 5 we present simulations with ambipolar diffusion us-
ing the GEM model too. In section 6 we present the results for
another simple current sheet model with guide field, in which
we measure reconnection rates, magnetic and kinetic energies,
and fluxes related to the energy transport equation. Finally, in
section 7 we summarize the main conclusions.

2. MHD equations for a conducting fluid with Hall and am-
bipolar terms

As mentioned above, we take a single-fluid approach with
Hall and ambipolar diffusion terms in the resistive MHD equa-
tions. The MHD model describes low-frequency interactions
between conducting fluids and electromagnetic fields, i.e. mo-
tions where u2/c2 << 1, where u is the characteristic fluid ve-
locity and c is the speed of light (Schnack, 2009).

2.1. Ohm’s law

Ohm’s law couples the dynamics of the fluid and the electro-
magnetic fields, taking into account non-ideal MHD processes
beyond the ohmic resistance. For a reference frame in which
the fluid moves with velocity u, Ohm’s law reads as follows
(Bittencourt, 2013; Ballester et al., 2018)

E + u × B = ηj + ηH(j × B) − ηA
[
(j × B) × B

]
, (1)

where η is the ohmic resistivity, ηH is the Hall coefficient, and
ηA is the ambipolar diffusion coefficient. The coefficients are
defined as

ηH =
1
ne
, ηA = KA ·

1

ρ2
√

T
, (2)

where n is the number density, e is the electron charge, ρ is the
plasma density, and T is the temperature. KA is a parameter that
controls the effect of the ambipolar term in our simulations and
depends on the collision frequencies between particles and the
physical conditions of the plasma (Viganò et al., 2019). For ex-
ample, KA is inversely related to the degree of ionization, so for
a fully ionized plasma, KA becomes zero and we do not have
ambipolar diffusion. Ohm’s law is often derived from the elec-
tron momentum equation under simplifying assumptions, such
as neglecting electron inertia, gravity acting on electrons, and
assuming that currents vary much more slowly in time than hy-
drodynamic processes (Zaqarashvili et al., 2011). Additionally,
strong couplings, which are sometimes broken in partially ion-
ized plasmas (Brandenburg and Zweibel, 1994; Brandenburg
and Zweibel, 1995), are often assumed. For a detailed discus-
sion of Ohm’s law in multi-component partially ionized plas-
mas, see (Khomenko et al., 2014). In this research, we focus
specifically on analyzing the impact of Hall terms and ambipo-
lar diffusion on the plasma dynamics associated with magnetic
reconnection phenomena.

2.1.1. Hall effect
The Hall effect refers to the appearance of an electric field

due to charge separation in a conductor. In plasma, the separa-
tion occurs as a consequence of decoupling between ions and
electrons that takes place in the diffusion region, where a multi-
scale structure is developed based on the characteristic lengths
of each species.

The Hall term arises from the separation of electron and ion
motions in the plasma. In the generalized Ohm’s law, this term
captures the dynamics of the magnetic field at scales smaller
than the ion inertial length. Including the Hall term allows for a
faster reconnection rate than predicted by classical MHD. This
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is essential for explaining the rapid energy release observed
in many astrophysical and laboratory plasmas. The Hall term
leads to the formation of quadrupolar magnetic fields around
the reconnection site. These structures are key observational
signatures in both simulations and experiments.

Given an initial antiparallel magnetic field as the one in Fig-
ure 1, the term j × B implies the appearance of electric fields in
the xy plane, where reconnection occurs. To understand the dy-
namics of ions and electrons influenced by these electric fields
and the appearance of the quadrupole field, a characteristic sig-
nature of Hall reconnection, the reader may refer to the physical
picture made by Uzdensky and Kulsrud (2006). Their descrip-
tion provides a clear example of how currents induced by the
Hall effect may affect the structure of the initial current sheet as
well as the magnetic field and its evolution (Morales, 2020).

Figure 1: Simple diagram of a current sheet. The magnetic field is located in
the xy plane and the current sheet in the xz plane is oriented towards the −z axis.

2.1.2. Ambipolar diffusion
Ambipolar diffusion affects the transport of magnetic flux

and can lead to the decoupling of magnetic fields from the bulk
plasma. This decoupling is crucial for understanding the recon-
nection process in environments where neutrals are present.

Ambipolar diffusion also produces the appearance of electric
fields, this time due to decoupling between neutrals and charged
particles (Zweibel, 2015). The ambipolar term (j×B)×B gener-
ates electric fields in the xz plane of Figure 1, as a consequence
it affects the perpendicular currents to the reconnection plane.
According to Morales (2020), this implies that ambipolar dif-
fusion cannot produce magnetic reconnection. However, it can
relax the magnetic field configuration by reducing the magnetic
energy, which is then converted to heat by a dissipation process.

Ambipolar diffusion influences the reconnection rates by
modifying the resistivity in the plasma. Depending on the lo-
cal plasma conditions, this can either enhance or suppress the
reconnection rate. In astrophysical contexts, such as star forma-
tion and the evolution of molecular clouds. Understanding its
impact is necessary for realistic modelling of these processes.

Although the Hall effect generates currents in the plane
where reconnection occurs, it does not contribute directly to re-
connection because it continues to freeze the magnetic field in
the electron flow (Priest and Forbes, 2000). In fact, both effects,
unlike ohmic resistance, preserve the magnetic field topology
and do not trigger reconnection. However, they can promote its
occurrence and affect its rate with effects such as current sheet
thinning and plasmoid formation (Nóbrega-Siverio et al., 2020;
Zweibel, 2015). Including both terms in the generalized Ohm’s

law lead to better predictions of reconnection rates, energy re-
lease, and the overall behaviour of plasma in both astrophysical
and laboratory settings.

Finally, it is important to clarify that the appearance of elec-
tric fields in the plane where reconnection occurs, or in its per-
pendicular plane, will change depending on the configuration
adopted, e.g. if a guide field is used, the z component of the
magnetic field must be considered. Figure 1 is only used to
illustrate a simple and specific configuration.

2.2. Transport equations

When the plasma, which may contain ions, electrons, and
neutrals, is considered as a single conducting fluid, the trans-
port equations for each species are replaced by transport equa-
tions for the whole plasma, meaning that variables such as den-
sity and velocity for each species are replaced by average val-
ues (Bittencourt, 2013). In conservative form, the macroscopic
transport equations for a conducting fluid are

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∂ρu
∂t
+ ∇ ·

(
ρuu −

1
µ0

BB + PI
)
= 0, (4)

∂E
∂t
+ ∇ ·

{
(E + P)u −

1
µ0

(B · u)B +
1
µ0

[
B2uH − (B · uH)B

]
+

1
µ0

(B2uA)
}
= −∇ ·

(
η

µ0
j × B

)
, (5)

where uH and uA are velocities associated with the Hall effect
and the ambipolar diffusion, defined as

uH = −ηHj, uA = ηA(j × B). (6)

The total pressure P is defined as

P = p +
B2

2µ0
, (7)

the sum of fluid pressure p and the magnetic pressure B2/2µ0.
The total energy density E is given by the sum of the kinetic,
magnetic and internal energy densities, that is

E =
1
2
ρu2 +

1
2µ0

B2 + ρe, (8)

here e is the system’s internal energy and is related to pressure
by the equation of state

p = (γ − 1)ρe, (9)

where γ is the adiabatic index. The equations (3), (4) and (5)
correspond to the transport equations for mass, momentum and
energy. To obtain them, no gravitational force is assumed, vis-
cosity and heat flow are neglected.

3



2.3. Evolution equations for the electromagnetic fields
Evolution equations for E and B are given by Faraday’s and

Ampère-Maxwell’s laws,

∇ × E = −
∂B
∂t
, (10)

∇ × B = µ0j, (11)

where the displacement current term in equation (11) is ne-
glected due to the low-speed approximation. Also, at all times
it must be guaranteed that

∇ · B = 0, (12)

which also guarantees the absence of magnetic monopoles. Fi-
nally, Faraday’s law can be rewritten using Ohm’s law to obtain
the induction equation

∂B
∂t
+∇·(uB−Bu)+∇·(uHB−BuH)+∇·(uAB−BuA) = −∇×ηj.

(13)
With equations (12) and (13), the system of equations (3)-(5) is
closed and we can proceed with the numerical methods used to
solve it.

3. Numerical methods: MAGNUS code

MAGNUS (Navarro et al., 2017) is the Newtonian version of
the relativistic code CAFE (Lora-Clavijo et al., 2015). It solves
the resistive MHD equations and has been used mainly to study
wave propagation in the solar atmosphere. Some of the scenar-
ios that have been simulated with MAGNUS are: the emerg-
ing plasma blob in a solar coronal hole (Navarro et al., 2019),
the thermal conduction effects on the formation of tadpole-like
jets in the solar chromosphere (Navarro et al., 2021), and the
propagation of torsional Alfvén waves in a stratified solar atmo-
sphere (Wandurraga et al., 2021). More recently, an adaptation
of MAGNUS has been used to model the propagation of PS-V
seismic waves (Landinez et al., 2021).

The code solves the system of equations in a uniform grid
using the method of lines, whose main idea is to replace the
spatial derivatives by algebraic approximations (Schiesser and
Griffiths, 2009). Once this is done, any integration method can
be used to compute a solution. In MAGNUS, the algebraic ap-
proximation of the right-hand side of the equations is done us-
ing the finite volume method in combination with the HLLE
approximate Riemann solver, which uses different slope lim-
iters. The time integration can be done with different integra-
tors of the Runge-Kutta family implemented in MAGNUS. In
particular, we use the MC beta limiter with β = 1.2 and a TVD
second-order Runge-Kutta in all simulations.

The finite volume discretization of the MHD equations, in-
cluding Hall and ambipolar terms, modifies the induction equa-
tion and the total energy density equation. We found that it is
not possible to consider the Hall term as an additional source
term, therefore it is necessary to add new terms to the numeri-
cal fluxes.

3.1. Hall and ambipolar corrections to the fluxes
With the velocities uH and uA, the energy and induction equa-

tions can be rewritten in coordinates as

∂E
∂t
= −

∂

∂x j

[
(E + P)u j −

1
µ0

(B · u)B j

]
−
∂

∂x j

[
B2uH

j − (B · uH)B j

]
−
∂

∂x j

(
B2uA

j

)
−

[
∇ ·

(
η

µ0
j × B

)]
j
, (14)

∂Bi

∂t
= −

∂

∂x j
(u jBi − B jui) −

∂

∂x j
(uH

j Bi − B juH
i )

−
∂

∂x j
(uA

j Bi − B juA
i ) − [∇ × ηj]i. (15)

The magnetic permeability µ0 does not appear in the above
equations because MAGNUS solves the dimensionless system
of equations.

The first three terms on the right-hand side of both equations
are fluxes, while the others are source terms. Since MAGNUS
already solves the resistive MHD equations, only the second
and third terms in parentheses need to be added to the fluxes
of each equation. With the finite volume method, the equations
are discretized as

dU(i, j,k)

dt
= −

Fx
(i+1/2, j,k) − Fx

(i−1/2, j,k)

∆x
−

Fy
(i, j+1/2,k) − Fy

(i, j+1/2,k)

∆y

−
Fz

(i, j,k+1/2) − Fz
(i, j,k−1/2)

∆z
+ S(i, j,k), (16)

where U is the state vector, Fi the vector of fluxes along each
direction1, and S the vector of source terms. In MAGNUS, each
vector of fluxes is calculated as

Fi±1/2, j,k = FHLLE
i±1/2, j,k + FH

i±1/2, j,k + FA
i±1/2, j,k, (17)

where FHLLE is the numerical flux for the MHD part, calculated
using the HLLE High-Resolution Shock Capturing method. FH

and FA are the fluxes due to Hall and ambipolar terms, both
computed in different subroutines and then added to the other
fluxes computed with the HLLE scheme along each spatial di-
rection. Equation (17) is analogous for Fi, j±1/2,k, Fi, j,k±1/2.

To compute the Hall and ambipolar velocities, which appear
in (14) and (15), we need the magnetic field and the current
density evaluated at the intercell. Since the current density is
given by j = (∇ × B)/µ0, we need the spatial derivatives of the
magnetic field. For the latter, some authors propose schemes
where the normal derivatives are computed differently from the
tangential derivatives (see Tóth et al. (2008) and Strumik and
Stasiewicz (2017)). However, we compute the derivatives of

1By using 1/2 in one of the subindexes of the triplet (i, j, k), we denote a
face between cells in a given direction. For example, The subindex (i+1/2, j, k)
represents the face between cells in i direction, that is, the face between (i, j, k)
and (i + 1, j, k).
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the magnetic field along each direction using a second-order
finite-difference scheme. At each of the nodes, the derivatives
are numerically approximated using forward, backwards, and
central finite differences. Once this is done, the Hall and am-
bipolar velocities can be obtained at each point in the numerical
grid. We then use the averaged variables

(uH)i+1/2, j,k =
(uH)i, j,k + (uH)i+1, j,k

2
, (18)

(uA)i+1/2, j,k =
(uA)i, j,k + (uA)i+1, j,k

2
, (19)

to calculate the velocities at the intercell. The same is done
for (uH)i, j+1/2,k, (uH)i, j,k+1/2, (uA)i, j+1/2,k y (uA)i, j,k+1/2 and also
for each component of the magnetic field in equations (14) and
(15).

3.2. Time-step modification
Following the Courant-Friedrichs-Levy condition, the time

step in MAGNUS is chosen as

∆t = CCFL ×min

 ∆x∣∣∣∣λn,x
i jk

∣∣∣∣ , ∆y∣∣∣∣λn,y
i jk

∣∣∣∣ , ∆z∣∣∣∣λn,z
i jk

∣∣∣∣
 , (20)

where the Courant-Friedrichs-Levy parameter CCFL must be
less than or equal to 1, and λn,d

i jk is the velocity of the fastest
wave propagating in some d direction at a time level n (Navarro
et al., 2017), so that the time step adapts at each level.

In the presence of Hall and ambipolar terms, some modifi-
cations are required. To do this, we performed a dimensional
analysis of each of these terms in the induction equation. For
the Hall term, we have

Bo

to
= ηH

joBo

xo
= ηH

B2
o

x2
o
, (21)

therefore

to =
x2

o

BoηH
=

xo
BoηH

xo

. (22)

It is clear that the denominator of the last fraction corresponds
to some velocity. With this is defined a new velocity

λH = u + c f +C
BoηH

xo
, (23)

where u is the fluid velocity and c f is the fast magnetosonic
velocity. According to Tóth et al. (2008), it is not necessary
to include the exact speed of the modes introduced by the Hall
effect, but a reduced speed can be used to guarantee the stabil-
ity of the simulations. In this case, C is a constant that allows
defining a reduced or extended speed of the Hall term. Thus,
there is freedom in the choice of C that allows to better adapt
the time step depending on the physical system to be simulated.

At each time level MAGNUS evaluates the speed λH at all
points in the domain and chooses the largest. Then, the time
step is calculated as

∆tH = CCFL ×

 ∆x
λn,x

H i, j,k
+
∆y
λ

n,y
H i, j,k

+
∆z
λn,z

H i, j,k

 . (24)

The same is done with the ambipolar term, for which

λA = u + c f +
B2

oηA

xo
, (25)

and

∆tA = CCFL ×

 ∆x
λn,x

A i, j,k
+
∆y
λ

n,y
A i, j,k

+
∆z
λn,z

A i, j,k

 . (26)

In the end, MAGNUS chooses the smallest time step between
(20), (24) and (26).

3.3. Scaling and Nondimensionalization

As mentioned above, MAGNUS solves the dimensionless
system of equations. Therefore, the dimensionless equations
are the ones that evolve. Then the dimensionless quantities that
result from the system’s evolution can be scaled with quantities
that do have dimensions and depend on the simulated physical
system.

In the code, this is done by dividing each physical quantity
by characteristic quantities of the system such as la ρa, ua and
constants such as the magnetic permeability µ0. Including the
Hall and ambipolar terms in the code makes it necessary to de-
termine expressions for ηHa and ηAa.

4. GEM reconnection challenge

After the implementation of the Hall and ambipolar term in
the MAGNUS code was done, we proceeded with the Geospace
Environmental Modeling (GEM) reconnection challenge (Birn
et al., 2001). The analytical solution to this problem is not
known, but since its publication, several authors have repro-
duced their results, which is why it is often used as a benchmark
test (Tóth et al., 2008; Strumik and Stasiewicz, 2017).

First, we use the GEM as a numerical test to verify the im-
plementation of the Hall term in MAGNUS. For the test, the
system starts from rest with a magnetic field whose components
are defined as

Bx = tanh(2z) + δBx, (27)
Bz = δBz, (28)
By = 0. (29)

The perturbations δBx and δBz are defined as

δBx =
0.05π

Lz
cos

(
2πx
2Lx

)
sin

(
πz
2Lz

)
, (30)

δBz =
0.1π
Lx

sin
(

2πx
2Lx

)
cos

(
πz
2Lz

)
. (31)

The initial density is

ρ = 1.2 − [tanh(2z)]2, (32)

and the pressure is p = ρ/2. In all simulations we set the re-
sistivity to η = 0.005. In the resistive+Hall simulations, the
normalized ion mass per charge is set to 1.0, so that ηH = 1/ρ.

5



In both cases, resistive and resistive+Hall, the simulation box
is [−Lx, Lx] × [−Lz, Lz] × [−Ly, Ly], where Lx = 12.8, Lz = 6.4
and Ly = 0.2. In this volume, the equations are discretized in a
three-dimensional numerical grid with Nx = 64, Nz = 128 and
Ny = 4. The boundary conditions are periodic in x, inflow in z
and outflow in y.

Figure 2 shows the reconnected flux of resistive and resis-
tive+Hall simulations. In both, the flux is calculated at each
time step as

Reconnected flux =
∫ Nx

Nx/2
Bz(x,Ny/2,Nz/2)dx. (33)

With the Hall effect, the reconnected flux reaches a value of
3.3, about six times larger than in the simulation with resistivity
alone, where the reconnected flux reaches a value of 0.5. This
result is in qualitative and quantitative agreement with those
presented in GEM for MHD and Particle-In-Cell (PIC) simu-
lations. For comparison see Figure 1 of Birn et al. (2001), at
t = 30 the Hall MHD case reaches a reconnected flux of about
3.2. See the bottom panel of Figure 1 from Pritchett (2001), the
reconnected flux reaches a value slightly above 3.0.

Figure 2: Testing results of the reconnected flux for the initial data of the GEM
reconnection challenge.

These results are also consistent with those of other au-
thors who have used GEM as a benchmark. For example, in
the kinetic simulation of Schmitz and Grauer (2006) the curve
reaches a value slightly above 3.0, similar to the MHD sim-
ulation of Tóth et al. (2008), both at time t = 30. This dif-
fers slightly from the results of Strumik and Stasiewicz (2017),
whose MHD simulation reaches a value of 2.5, lower than the
simulations mentioned above and the results shown in Figure
2. For the resistive case, the result presented in Figure 2 is also
in agreement with those presented by Birn et al. (2001); Tóth
et al. (2008); Strumik and Stasiewicz (2017).

5. Ambipolar diffusion in the GEM

Although the GEM was designed to study the Hall effect on
magnetic reconnection, we use the same scenario to study the
effect of ambipolar diffusion. To our knowledge, such a system-
atic study of simulations with ambipolar diffusion in the GEM

model has not been done before. In fact, ambipolar diffusion
had been overlooked in the Earth’s magnetotail.

We present two types of simulations: resistive+ambipolar
and resistive+Hall+ambipolar. The Hall parameter remains
unchanged, with the same value as in the previous section
(ηH = 1/ρ). The ambipolar term, ηA = KA · 1/ρ2

√
T , is im-

plemented with T = p/ρ. Three values of KA are considered:
0.001, 0.005, and 0.01 (since KA is inversely proportional to the
degree of ionization, the latter value represents the less ionized
case). These values were selected taking into account equation
(22) from (Ni et al., 2015). These values physically correspond
to values of ηA in the chromosphere. The code being dimen-
sional allows for the straightforward use of these values without
any issues.

Figure 3 shows the reconnected flux of the resistive simula-
tion compared to the resistive+ambipolar cases. As can be seen,
the reconnected flux grows with the value of KA, obtaining an
increase of about 7% for KA = 0.001, 38% for KA = 0.005,
and 75% for KA = 0.01, all percentages with respect to the
resistive case. Comparing with figure 2, we see that the in-
crease of the reconnected flux is much higher with the Hall
effect than with the ambipolar diffusion, but the percentages
indicate that the ambipolar diffusion also contributes to the re-
connected flux. Furthermore, its increase could be higher if
other values of KA are considered. Figure 4 compares the re-
connected flux of the resistive+Hall simulation with the resis-
tive+Hall+ambipolar cases. For the case with KA = 0.01, the
reconnected flux grows faster until it reaches an increase of
143% (with respect to the resistive+Hall case) at time t = 18
and then remains approximately stationary until the end. This
quasi-steady state of the reconnected flux seems to be caused
by the appearance of a plasmoid in the centre of the domain at
t = 18.

Figure 3: Reconnected flux for different values of the KA parameter in the re-
sistive+ambipolar simulations.

To illustrate the qualitative differences between some of the
simulations carried out, Figure 5 shows the current density at
time t = 20 for the four types of simulations: resistive, resis-
tive+Hall, resistive+ambipolar, and resistive+Hall+ambipolar,
using KA = 0.01 for those that include the ambipolar term. For
the resistive simulation (upper left panel), we observe an elon-
gated current sheet of nearly the order of the global length scale,
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Figure 4: Reconnected flux for different values of the KA parameter in the re-
sistive+Hall+ambipolar MHD simulations.

as proposed by the model of Sweet-Parker. By including the
ambipolar term (lower left panel) we observe a thinner current
sheet, in agreement with the results of Ni et al. (2015), where
the inclusion of ambipolar diffusion causes a rapid thinning of
the current sheet in the solar chromosphere.

Together with the reconnected flux shown in Figure 3, these
results support the fact that elongated current sheets result in
low reconnection rates, which are inconsistent with the rate
suggested by observations. For the resistive+Hall simulation
(upper right panel), the diffusion region is much smaller as the
current density is concentrated in an x-shaped region in the cen-
tre of the domain, a result consistent with the one presented by
Strumik and Stasiewicz (2017). However, it differs from the
presented by Tóth et al. (2008), whose simulation with the Hall
effect shows asymmetric behaviour, has two reconnection re-
gions and a plasmoid, a result that is not obtained with MAG-
NUS for any time of the resistive+Hall simulation case. In fact,
the combination of the Hall effect with ambipolar diffusion in
the resistive+Hall+ambipolar case is the only one that produces
the formation of a plasmoid (bottom right panel).

It is worth checking whether the plasmoid is due to insuffi-
cient resolution. For that, in Figure 6 we present the results of
two more simulations with higher resolution: the first one with
128×256 and the second with 256×512 grid points. Both pan-
els of Figure 6 show the same global morphology. Locally, the
higher resolution panel reveals more detail, but the appearance
of the plasmoid in the centre of the domain is consistent in sim-
ulations with different resolutions. Based on these results, we
can confirm that the appearance of the plasmoid is not due to a
numerical issue.

Concerning the formation of the plasmoid, we want to high-
light the current sheet thinning caused by the ambipolar diffu-
sion that can be seen in 5. We believe that the spatial scale
reduction, attributed to the thinning of the current sheet char-
acteristic of ambipolar diffusion, is likely crucial for bringing
magnetic field lines close enough together to facilitate magnetic
reconnection. Moreover, in a region of strong magnetic gra-
dient, ambipolar diffusion can allow electrons to move faster
than ions, which can cause the formation of thin current lay-
ers and then the possible appearance of instabilities in those

Figure 5: Out-of-plane component of the current density at time t = 20. The
simulations with Hall effect and ambipolar diffusion have parameters KH = 1.0
and KA = 0.01.

Figure 6: Out-of-plane component of the current density at time t = 18 with
higher resolutions.

layers. These instabilities can evolve towards the formation of
plasmoids.

We believe that the formation of the plasmoid in the sim-
ulation is facilitated by the combined effects. However, sub-
stantiating this claim requires a systematic study solely focused
on plasmoid formation, demonstrating how these combined ef-
fects enhance the likelihood of plasmoid formation. It is crucial
to emphasize that plasmoid formation cannot be attributed to a
single phenomenon. Rather, it emerges from the interaction and
dynamics of multiple factors. As noted by Singh et al. (2019),
while the thinning of the current sheet plays an important role
in plasmoid formation, it is influenced not only by this thinning
but also by additional factors that collectively shape the overall
dynamics of magnetic reconnection.

6. Current sheet with a guide-field

This second model attempts to simulate the process of mag-
netic reconnection from the formation of a current sheet. It
also includes the presence of a guide field, that is, the non-
reconnecting component of the magnetic field that is out-of-
plane. This out-of-plane component is commonly used in solar
flare simulations and plays an important role in determining key
properties of reconnection, like the efficiency of particle accel-
eration (Dahlin et al., 2022). Unlike the GEM, in this model,
we use initial data with constant density, constant pressure, and
magnetic field without perturbations. This ensures that the cur-
rent sheet is not formed at time zero and that the reconnected
flux is zero. To trigger reconnection, we use spatially localized
resistivity.
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The system starts from rest with a magnetic field whose com-
ponents are defined as (Shibata et al., 2022)

Bx = B tanh(y/w), (34)
By = 0, (35)

Bz = B/ cosh(y/w), (36)

being Bz the guide-field with B = 3.92 and w = 0.5. Density
and initial pressure of the system are given by ρ = 1.0 and
p = 1.0, and the localized resistivity is given by the function

η = η0 · exp

−

√

y2 +
(
x − hη

)2

wη


2 , (37)

with η0 = 0.01, hη = 15.0 and wη = 1.0. The computational
domain is [0, Lx] × [−Ly/2, Ly/2] × [−Lz/2, Lz/2] where Lx =

30.0, Ly = 15.0 and Lz = 0.15, with a numerical mesh with
Nx = 800, Ny = 400 and Nz = 4. The boundary conditions are
periodic in x, inflow in y and outflow in z.

With the previous specifications, four simulations are per-
formed: resistive, resistive+Hall, resistive+ambipolar, and re-
sistive+Hall+ambipolar. It is important to emphasize that in or-
der to perform systematic simulations, the only thing that varies
in each type of simulation is the presence or absence of the Hall
effect and the ambipolar diffusion, which is controlled by the
parameters ηH and ηA. The initial data, boundary conditions,
computational domain, spatial resolution, and numerical meth-
ods are the same for all simulations. For the ambipolar coeffi-
cient, we used KA = 0.01 and for the Hall coefficient, we set the
normalized ion mass per charge to 0.2.

As mentioned above, the out-of-plane component of this
model is also commonly used in solar flare simulations. That
is one of the reasons why this second model is suitable for ap-
plication to partially ionized plasmas, like the chromosphere,
where ambipolar diffusion is a relevant phenomenon and could
potentially impact its dynamics. In such instances, it is essen-
tial to select characteristic values for scaling the dimensionless
outcomes derived from the computational code, so that the re-
sults may have dimensions according to the physical scenario.
In our study, all quantities were kept dimensionless, meaning
they were not scaled to fit a particular scenario. This approach
allowed us to focus on assessing the potential impact and ef-
fects of the Hall and ambipolar diffusion terms on reconnection
itself, rather than their applicability to a specific context.

6.1. Current sheet morphology
First, we examine the current sheet morphology at time t =

12ta, where ta is a characteristic time. Figure 7 shows the tem-
perature distribution in the current sheet for each simulation. It
can be seen that the current sheet centre is the hottest region, es-
pecially in the resistive and resistive+ambipolar cases. For the
resistive+Hall and resistive+Hall+ambipolar simulations, the
central region is not as hot, but we see heating at the extremes of
the domain, particularly in the presence of the ambipolar term.

Regarding the plasma velocities, Figure 8 shows maps for
the ux component, where we can clearly see the presence of

two flows with opposite directions coming out of the central
region. This indicates that the plasma is being accelerated out
of the current sheet, one of the main consequences of reconnec-
tion. Therefore, this type of velocity diagram is characteristic of
magnetic reconnection and is also consistent with the diagrams
in the PIC simulations of Nakamura et al. (2018), which were
performed to model a reconnection event detected by MMS.
The different panels of figure 8 also show that the high-velocity
regions are bigger in the presence of the Hall effect and ambipo-
lar diffusion. Thus, both effects contribute to the acceleration of
particles.

Finally, figure 9 shows maps for the uy component. In the
panels, we see that the plasma is moving toward the current
sheet, with positive velocities in the lower region of the domain
and negative velocities in the upper region. Towards the ex-
tremes of the domain, where the current sheet opens, this distri-
bution of velocities changes: negative velocities are present in
the lower region and positive in the upper region. This indicates
that although the plasma enters the diffusion region, it is also
expelled from it according to the scheme of magnetic recon-
nection. We can also see that the plasma regions with the high-
est velocities are located at the extremes of the current sheet.
There, the colour distribution indicates that there are abrupt
changes in both the magnitude and direction of the velocity.
This type of behaviour can trigger turbulence and be another
mechanism contributing to plasma acceleration (Price et al.,
2016). Three-dimensional MHD simulations of Shibata et al.
(2022) and Shen et al. (2022) investigate the dynamics of solar
flares with a focus on the generation of turbulence. These stud-
ies identified regions characterized by turbulent flows, which
may significantly influence electron acceleration within these
areas. Additionally, they found self-organized structures in tur-
bulent interface flare regions, resembling formations also seen
in supernova remnants. Further investigation on this topic is
essential for understanding the mechanisms behind substantial
energy releases and events of particle acceleration.

6.2. Reconnection rate
In addition to telling us that the flux is being reconnected, the

reconnection rate is associated with the energy released during
the process.

The original model for determining the reconnection rate was
proposed by Sweet (1958b,a) and Parker (1957, 1963), consid-
ering a diffusion region with length L, on the order of the global
external length scale that occupies the entire boundary between
opposing magnetic fields. According to this model, the dimen-
sionless reconnection rate is given by: vi/vAi = 1/

√
S , where vi

is the characteristic speed of entry of the field lines into the dif-
fusion region, vAi is the Alfvén speed at the entry and S is the
Lundquist number. In general, the Lundquist number is large
for most astrophysical plasmas (S >> 106). Consequently, the
Sweet-Parker reconnection is too slow to explain phenomena
such as geomagnetic storms (Birn and Priest, 2007).

Simulations and observations have reported a fast rate of 0.1,
and smaller values cannot explain the rapid energy release that
accelerates the plasma. Here the dimensionless reconnection
rate is calculated as v/vA, where v is the plasma velocity at the
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Figure 7: Temperature distribution at t = 12ta. In all cases, the hottest region is
found at the current sheet centre. For the resistive+Hall+ambipolar simulation,
high heating is also observed at the extremes of the domain.

entrance of the diffusion region and vA is the Alfvén velocity,
also at the entrance (Priest and Forbes, 2000). Although it is
impossible to determine the exact volume and location of the
diffusion region, the localized resistivity in the centre of the re-
gion implies that we have a single reconnection site also located
in the centre. Based on this, the entry to the diffusion region can
be considered as the point located at (Nx/2,Nyi,Nz/2), where
Nyi is a point close to the line y = 0.0 (Ny/2), but not on it be-
cause there the magnetic field is zero. Thus, for all simulations,
the reconnection rate is calculated as

Reconnection rate =
v(Nx/2,Nyi,Nz/2)
vA(Nx/2,Nyi,Nz/2)

, (38)

with Nyi on the line y = 0.5. The velocities are computed using

only the components of the xy plane, that is, v =
√

v2
x + v2

y and

vA = B/
√
ρ with B =

√
B2

x + B2
y .

In Figure 10 we plot the reconnection rate as a func-
tion of time for the four types of simulations. The results
show that when running systematic simulations, the resis-
tive+Hall+ambipolar case reaches a reconnection rate of 0.1,
followed by the resistive+Hall case. The Hall effect simula-
tions show similar reconnection rates, implying that the Hall

Figure 8: ux velocity maps at t = 12ta. All simulations exhibit two flows with
opposite directions, a characteristic feature of magnetic reconnection. More-
over, the highest velocity regions widen in the presence of the Hall effect and
ambipolar diffusion.

term is indeed important to obtain reconnection rates of 0.1.
However, the results also show that the ambipolar term may
play an important role in the reconnection rate. While the Hall
effect dominates when reconnection rates are compared to the
resistive case, it is the combination of the Hall effect and am-
bipolar diffusion that reaches a value of 0.1, comparable to what
has been observed, for example, in the magnetosphere, where
MMS values are 0.1 − 0.2 (Chen et al., 2017; Nakamura et al.,
2018).

The ambipolar term also seems to influence the reconnection
rate to increase faster, which is why the maximum rate appears
earlier in the simulations with ambipolar diffusion, an effect
also reported by other authors (see case C from model I and
case F from model II in Figure 5 of Ni et al. (2015)). However,
Ni et al. (2015) attribute this to the fact that ambipolar diffusion
triggers plasmoid instability. Our results show that even with-
out plasmoids, ambipolar diffusion has the effect of accelerating
the reconnection process.

In our simulations, the Lundquist number is of the order of
S ∼ 104, which corresponds to a reconnection rate S −1/2 ∼ 0.01
according to Sweet-Parker (as we mentioned above, the rate
is calculated as 1/

√
S ). This shows that reconnection in our
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Figure 9: uy velocity maps at t = 12ta. All maps show plasma movement
towards the current sheet and velocity distribution changes in its extremes. This
indicates plasma is entering and exiting the diffusion region. Regions with
higher velocities are found at the current sheet extremes and are highest in the
presence of the Hall effect and ambipolar diffusion.

simulations is not a Sweet-Parker-type reconnection, which is
not surprising since the Sweet-Parker model involves several
simplifications. For example, it assumes a uniform resistivity,
contrary to the localized resistivity we used for our simulations
(as described in equation (37)).

Finally, concerning the formation of plasmoids, it is worth
mentioning that for values of S > 104, plasmoid instability oc-
curs Loureiro et al. (2007). In the solar chromosphere, for in-
stance, the values of the Lundquist number are of the order of
S ∼ 106 − 108 Ni et al. (2015). Because the value we assume in
our work was the critical value S ∼ 104, we do not expect the
formation of plasmoids.

6.3. Energy conversion and transport

Figure 11 shows the evolution of magnetic and kinetic en-
ergy measured by a detector. Similar to the reconnection
rate, this detector corresponds to a point with coordinates
(Nxi,Ny/2,Nz/2), where Nxi is at x = 10.0. The results show
that the kinetic energy starts from zero for the four types of
simulations, in agreement with the initial data. From the initial
time to t = 5ta, there is a slight decrease in the magnetic energy

Figure 10: Reconnection rate as a function of time.

that does not lead to a noticeable increase in the kinetic energy,
most likely because there is also conversion to internal energy
and dissipation by Joule heating. From time t = 5ta the kinetic
energy increases, coinciding with an increase in magnetic en-
ergy from t = 5ta to t = 7ta. Finally, from t = 7ta to the end
of the simulation, the behaviour of the curves is consistent with
the reconnection process: the magnetic energy decreases while
the kinetic energy increases because there is a conversion from
one to the other.

Figure 11: Temporal evolution of kinetic and magnetic energies.

The resistive+Hall and resistive+Hall+ambipolar simula-
tions achieve the highest kinetic energy values. This sug-
gests that the Hall and ambipolar terms not only affect the
reconnection rate but also the particle acceleration. Consid-
ering that the kinetic energy of the resistive+Hall and resis-
tive+Hall+ambipolar simulations reaches a value close to the
initial value of the magnetic energy, we conclude that the Hall
effect and its combination with ambipolar diffusion provide a
more efficient energy conversion during the reconnection pro-
cess.

To fully understand both energy conversion and transport, it
is necessary to consider not only the change in energy stored in
a volume but also the amount of energy flowing through the sur-
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face surrounding it. In particular, we focus on a small region of
the domain, including the diffusion region where reconnection
occurs, and study the influence of the Hall effect and ambipo-
lar diffusion on electromagnetic energy, bulk kinetic energy and
enthalpy fluxes. The fluxes are related to the energy transport
equation (5) which, in addition to describing the conservation of
energy, tells us how energy is transferred from one form to an-
other. Specifically, the electromagnetic energy flux is given by
the Poynting vector S = (E×B)/µ0, where the electric field can
be obtained from Ohm’s law (1). The bulk kinetic energy flux is
given by K = ρu2u/2 and the enthalpy flux by H = (p+ ρe)u =
γpu/(γ − 1), which has a contribution from the internal energy
density and another from the compressional work, pu. These
three quantities are integrated over a volume whose domain is
given by [8la, 16la]×[−3.5la, 3.5la]×[−0.1la, 0.1la]. The results
are shown in Figure 12, where we have plotted these fluxes as
a function of time for each case, i.e. resistive, resistive+Hall,
resistive+ambipolar and resistive+Hall+ambipolar.

Figure 12: Temporal evolution of the electromagnetic energy flux (first panel),
bulk kinetic energy flux (second panel) and enthalpy flux (third panel).

The results depicted in Figure 12 reveal that energy transport
associated with reconnection primarily arises from electromag-
netic and enthalpy fluxes, while kinetic energy flux plays a rel-
atively minor role. Notably, the three panels in Figure 12 indi-
cate that the rate of energy transfer is significantly higher in the
resistive+Hall and resistive+Hall+ambipolar cases. This sug-
gests that Hall and ambipolar effects may account for the rapid
energy release during magnetic reconnection.

To quantitatively analyze this phenomenon, we measured

the increases in S x, Kx, and Hx for the resistive+Hall, resis-
tive+ambipolar, and resistive+Hall+ambipolar cases compared
to the resistive case at time t = 8ta. For S x, we observed
a 29% increase in the ambipolar case, 34% in the Hall case,
and 55% in the Hall+ambipolar case. Similarly, for Kx, the
increases were 73%, 99%, and 171%, respectively. Finally,
for Hx, the increases were 33%, 47%, and 76%, respectively.
These measurements, conducted at time t = 8ta and calcu-
lated relative to the resistive case, demonstrate that the resis-
tive+Hall+ambipolar case exhibits the highest percentage in-
creases, followed by the resistive+Hall case. Consequently, we
can conclude that the Hall effect, particularly in combination
with ambipolar diffusion, facilitates more efficient energy trans-
port during reconnection.

7. Conclusions

Existing research has mainly focused on the Hall effect or
ambipolar diffusion separately, without exploring the potential
impact of their combined influence in a systematic way. In this
work, we conducted a systematic study to analyze the effects
of the Hall term and ambipolar diffusion on the formation and
evolution of current sheets, the reconnection rate and the energy
released during the magnetic reconnection process. Our find-
ings underscore the importance of considering both effects in
partially ionized plasma dynamics, where ambipolar diffusion
cannot be neglected. We have observed significant enhance-
ments in reconnection rates compared to simulations neglect-
ing one or both processes. This integrated approach provides
valuable insights into the acceleration of reconnection events in
astrophysical plasmas, contributing to a more comprehensive
understanding of magnetic reconnection speed-up mechanisms
essential for the study of all astrophysical plasmas.

We solved the system of MHD equations with resistivity,
Hall effect and ambipolar diffusion using MAGNUS. Since the
code only solved the resistive MHD equations, we implemented
new subroutines to calculate all terms related to the Hall effect
and ambipolar diffusion in the numerical fluxes. The inclusion
of these effects also required modifications to the time step.
However, the presence of the Hall term in the code results in
a significant reduction of the time step, which makes the execu-
tion time excessive, especially when a high spatial resolution is
required.

Once the subroutines were implemented and modified, we
used the initial data and boundary conditions proposed by the
GEM magnetic reconnection challenge, a project to study the
Hall effect in magnetic reconnection that has been used by
many authors as a benchmark test. We performed four types
of simulations, systematically turning on and off the Hall and
ambipolar terms. Here, systematic means that the initial data,
boundary conditions, computational domain, spatial resolution,
and numerical methods were the same for all simulations, ex-
cept for the Hall and ambipolar parameters, which changed de-
pending on which term was turned on or off in each simulation.
The four types of simulations were: resistive, resistive+Hall,
resistive+ambipolar, and resistive+Hall+ambipolar.
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First, we tested the Hall effect in MAGNUS by replicating
the results of the GEM project. For the resistive and resis-
tive+Hall simulations, we obtained a reconnected flux of 3.3
and 0.5, respectively, the same values as reported by Birn et al.
(2001) in the GEM summary. Not only the values were the
same, but also the qualitative behaviour of the curves. The same
is true if we compare the results with those of other authors,
such as Schmitz and Grauer (2006); Tóth et al. (2008); Strumik
and Stasiewicz (2017), where only slight differences are found.
Finally, since we obtained the same results as in the test, MAG-
NUS shows fidelity in solving the MHD equations with the Hall
term.

The ambipolar diffusion term was programmed similarly to
the Hall effect. No benchmark test was performed this time,
but we did investigate the effect of ambipolar diffusion on the
GEM problem for the first time. This was done by systemati-
cally comparing simulations where only the ambipolar parame-
ter KA was changed. In both the resistive+ambipolar and resis-
tive+Hall+ambipolar simulations, the reconnected flux grows
with the value of KA. The higher value of KA was 0.01, the less
ionized case compared to the other values used in this inves-
tigation. With KA = 0.01 we obtained a 75% increase of the
reconnected flux for the resistive+ambipolar simulation com-
pared to the resistive one. For the resistive+Hall+ambipolar we
got a 143% increase in reconnected flux compared to the resis-
tive+Hall simulation. However, after the increase, the flux of
the latter remained quasi-stationary due to the formation of a
plasmoid.

In general, the results of the GEM scenario show that the in-
clusion of the Hall effect produces a significant increase in the
reconnected flux. Similarly, the inclusion of ambipolar diffu-
sion produces significant increases. This suggests that ambipo-
lar diffusion, like the Hall effect, could be one of the mecha-
nisms for fast reconnection rates.

To study a model different from the GEM, which does not
have a guide field, has uniform resistivity and has the cur-
rent sheet formed since the beginning, we implemented a
simple magnetic field configuration without perturbations, but
with a guide-field and localized resistivity as initial data for
the formation of a current sheet. In this model, the resis-
tive+Hall+ambipolar case was the only one that reached a 0.1
value in the reconnection rate, followed by the resistive+Hall
case. These results show that the Hall effect is indeed the domi-
nant phenomenon when it comes to increasing the reconnection
rate and obtaining values close to 0.1. However, ambipolar dif-
fusion is also relevant, since it was the combination of the Hall
effect and ambipolar diffusion that reached a maximum value
of 0.1. Moreover, simulations with ambipolar diffusion show a
faster growth of the reconnection rate, which helps explain the
rapid energy release that accelerates particles.

We also found that the conversion from magnetic to kinetic
energy is more efficient in the presence of the Hall effect and its
combination with ambipolar diffusion. This supports the fact
that both mechanisms have a significant impact on particle ac-
celeration processes.

In addition to energy conversion, we also study its trans-
fer through the fluxes present in the energy transport equation,

and we found that energy transport is mainly due to electro-
magnetic and enthalpy fluxes. The kinetic energy flux is also
present but is smaller than the others. For the three fluxes, the
rate of energy transfer is higher in the resistive+Hall+ambipolar
case, followed by resistive+Hall and resistive+ambipolar cases.
Therefore, we conclude that both mechanisms provide more ef-
ficient energy transfer, especially when combined. Since the
highest energy transfer rate is for the resistive+Hall+ambipolar
case, we highlight the importance of ambipolar diffusion.

Our results show that ambipolar diffusion causes magnetic
energy to dissipate rapidly, facilitating the reconnection of mag-
netic field lines, and leading to the formation of thin current
sheets. It is worth mentioning that the Hall effect enhances re-
connection by altering the magnetic field topology and favour-
ing the appearance of localized plasma current sheets, a natural
outcome of the presence of a Burgers-like term. The above
since the Hall term is proportional to the current, it is quadratic
in B, and hides a Burgers-like behaviour (Vainshtein et al.,
2000)). On the other hand, the ambipolar diffusion term, which
is not quadratic but cubic in B, is related to a velocity in the
same direction as the Lorentz force. Therefore, its effect is to
dissipate the currents perpendicular to B, acting to align mag-
netic and current fields (Viganò et al., 2019). Ambipolar effect
plays a crucial role in the study of magnetic reconnection for
several reasons. Mainly, it facilitates energy dissipation, which,
together with the Hall effect, is essential for the optimal conver-
sion of magnetic energy into thermal and kinetic plasma energy.
The above is supported by our last results, where the rate of en-
ergy transfer shows a notable increase in the cases combining
Hall and ambipolar effects.

Finally, it is essential to emphasize that although plasmas are
often treated as single fluids, the distinction between ions, elec-
trons, and neutral species becomes significant in diffusion re-
gions where magnetic reconnection occurs. Therefore, future
research should focus on a multi-species charged fluid model
rather than a single-fluid approach. The different species inter-
act through elastic and inelastic collisions. Elastic collisions in-
volve the exchange of momentum and energy between different
fluids, while inelastic collisions involve processes such as ion-
ization and recombination. Adopting a multi-fluid approach al-
lows for a more comprehensive study of regions within the flow
sheet where turbulence is induced, such as the extremes where
abrupt changes in velocity magnitude and direction occur. A
recent study by Shibata et al. (2022) examined such regions in
solar flares, where turbulence is also generated. A systematic
study of turbulence excitation in the Earth’s magnetotail using
a multi-fluid framework would be very interesting and provide
valuable insights. The above requires a model of the Earth’s
magnetotail current sheet without oversimplification.
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